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Variational procedure for time-dependent processes
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A simple variational Lagrangian is proposed for the time development of an arbitrary density matrix,
employing the ‘‘factorization’’ of the density. Only the ‘‘kinetic energy’’ appears in the Lagrangian. The
formalism applies to pure and mixed state cases, the Navier-Stokes equations of hydrodynamics, transport
theory, etc. It recaptures the least dissipation function condition of Rayleigh-Onsager and in practical applica-
tions is flexible. The variational proposal is tested on a two-level system interacting that is subject, in one
instance, to an interaction with a single oscillator and, in another, that evolves in a dissipative mode.
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I. INTRODUCTION

Several basic aspects of stochastic dynamics remain
troversial.~A critical ‘‘state of art’’ update in Ref.@1# shows
this.! This situation contrasts with most physical theorie
where the problems that arise are in the application of c
sensually accepted principles. It can perhaps be argued
the lack of an agreed-upon variational formulation of s
chastic processes is at the root of the problem. As a rem
of this situation, this paper suggests a variational functio
which is to be minimized and whose minimum is the tr
density matrix.

To be sure, in the past several principles of extrema h
been proposed; these include Gauss’s least constraint
ciple @2,3#, the ‘‘least dissipation function’’@4–6#, minimum
entropy production rate for steady states@7,8# ~see also Ref.
@9# for its violation!, minimal energy generation rate@10#,
minimal scattering integral@11–13#, least velocity error dur-
ing pathway@3#, the Yasue action for stochastic mechan
@14#, a formulation involving a potential@15#, and again,
recently, maximum entropy production@16#. To these may be
added several variational methods applicable to class
~i.e., not quantal! systems, such as those appropriate for g
eral nonlinear problems@17#, the ‘‘governing principle for
dissipative processes’’@18,19# and a generalized Hamiltonia
principle @20#. Reviews of these and of other methods can
found in Refs.@21–24#.

The present proposal for a variational procedure is ba
on the following new elements:~a! the factorization~to be
discussed later in this paper! of the density matrix as intro
duced by Reznik@25# and utilized recently by Gheorghiu
Svirschevski@16#, ~b! a conventional Lagrangian similar t
that used in mechanics to obtain the motion of a point p
ticle subject to an external force, but in which the sca
potential is either absent or ignorable,~c! a vector potential
that can be singular, without this having disastrous obse
tional consequences, and~d! an appropriate use of minimi
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zation procedure, with origins going back to Gibbs@2#. The
method covers a broad range of behaviors~‘‘deterministic’’
and stochastic, quantal and classical, electronic transp
discrete and continuous, Markovian and otherwise! and
places in a new perspective certain aspects in currently
ployed theories of stochastic dynamics. Apart from these
vorable ~and a priori unexpected! features, a number o
problems remain, which will have to be resolved by futu
efforts.

A pure state subcase~as opposed to a density matrix th
can describe a statistical mixture of states! is the subject of a
numerically worked out example in Sec. IV A and is equiv
lent to the~linear! time-dependent Schro¨dinger equation. For
this several variational formulations are known in the lite
ture @26–31#. The inter-relation between these was inves
gated in Ref.@30#, where they were shown to be frequent
equivalent. For the pure state case our density matrix va
tional method reduces to the McLachlan formalism@27#, in
which the variation of the function is carried out with respe
to the time derivative only~while the function is kept fixed!.
Moreover, we give a justification of this procedure for st
chastic processes.

Another application of the variational formalism, in Se
IV B, includes a nonlinear, dissipative~non-Hermitian!
mechanism and exemplifies quantum jumps.

II. THE VARIATION

The ‘‘factorized’’ form of the time-dependent density m
trix r @16,25# reads in terms of the column and row vectorsg
and ~its Hermitian conjugate! g†,

r5gg†. ~1!

The above condensed notation is not trivially simple, so
give in Appendix A a ‘‘tutorial’’ on the notation. We now
propose an actionS(T) ~expressed in arbitrary units! this
being the integral over timet with an arbitrary time end poin
T of a LagrangianL. It is the form of the Lagrangian tha
we seek: we propose that it has the ‘‘quadratic’’ form,
follows:
©2004 The American Physical Society20-1
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S~T!5E
0

T

dtL~ t !5E
0

T

dtTr~ i ġ†2A†!•~2 i ġ2A!. ~2!

The variational equations based on the above action~these
are the equations of motions forg andg†) are given below
in Eq. ~7! . Tr is the trace over all ‘‘components’’ ofg ex-
plained in Appendix A. Dots above symbols represent diff
entiation with time.

The variational equations are obtained in the usual way
varying the actionS(T) with respect to all components of th
two vectorsg andg†. Thus

dgS~T!5E
0

T

dtdg~ t !FdL~ t !

dg
2

]

]t

dL~ t !

dġ
G1

dL~T!

dġ
dg~T!

~3!

and a similar expression fordg†S(T). The last term, outside
the integral, is the boundary term. It is assumed that
vectorsg are fixed initially att50, but not at any time later
~This will be discussed shortly.! If the boundary term can be
made to vanish, so will be the whole variation, since in
absence of a scalar potential, the variationsdL(t)/dg and
dL(t)/dg† vanish. This follows, since for the postulate
form of the Lagrangian these variations contain as a fa
one or the other of the expressionsdL(t)/dġ anddL(t)/dġ†

and these vanish due to the boundary variation.~In fact,
dL(t)/dg anddL(t)/dg† also vanish due to the presence
the same factors, but these variations do not form a su
ciently general basis for the variation procedure, since
vector potentialA may not be a function ofall components
of the g vector.!

At this point the role of the boundary term is well wor
reflecting upon. It is not present in, e.g., deterministic m
chanics, where the values of the variables are fixed at b
end points. However, it is well known that the boundary te
arises when the value of the variant quantity, i.e.,g, is unde-
termined at a boundary. This is~physically! the case when a
random force operates on the system. Thus, we are no
lowed to neglect the boundary term. It is now a further ‘‘b
nus’’ in the formalism that the vanishing of the boundar
term variation does not interfere with the vanishing of t
body-term variation~i.e., it is neither contradictory to it no
incomplete with respect to it!, but is by virtue of our choice
of the Lagrangian precisely identical with it.

In summary, we have the variational equations

dL~ t !

dġ
50 ~4!

and their complex conjugates

dL~ t !

dġ †̇
50 ~5!
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and these make the action extremal~and an absolute mini-
mum! also when the ‘‘vector potential’’1 A is a function ofg
@32#. @To see this, note the remark after Eq.~7! .# This has the
immediate consequence that in the expansion of the
grangian, shown in Eq.~2!, the following expression~dissi-
pation function! needs to be minimized:

FD5ġ†ġ2 i @ ġ†A2ġA†#. ~6!

This follows, since theA•A† term is independent of time
derivatives and is not varied. We further note that~by the
form of the vector potential! i times the square bracket is
real quantity. The quantity in the above equation is ess
tially of the form of Onsager and Machlup’s dissipation fun
tion „the negative of Eqs.~4!–~25! in Ref. @5#. One recalls
that their dissipation function is also minimized only wi
respect to the time derivatives of the variables just as in
procedure proposed in Ref.@27# and in the present work…. To
bring our ‘‘DF’’ precisely to the form of the dissipation func
tion, we need to go from our variablesg and g† by a con-
stant linear transformation~not necessarily a unitary one! to
the variablesa of Ref. @5#. One will then get, instead of the
diagonal formġ†ġ, a nondiagonal form which defines th
‘‘generalized resistance matrix’’Ri j of Refs.@3,6#. @Since the
use of extensive variables is to be preferred to intensive o
~and g and g† are of the latter type! the transformation
should include the system size. Alternatively, the action
tegral may be premultiplied by a size-dependent scale
tor.#

Thus, the result of the variation are a set of equations

ġ5 iA,

ġ†52 iA†. ~7!

When A and A† are functions ofg and g†, their ~nonzero!
derivatives come in with eitherġ2 iA or ġ†1 iA† as factors
and these factors vanish due to the above equations.

@We can illustrate this in the case of two components,
which we write the Lagrangian in Eq.~1! as

L~ t !5 f 1
†f 11 f 2

†f 2 ~8!

and f 152 i ġ12A1(gk ,gk
†), etc., with theg dependence ex

plicitly put in A’s. Recall that Eq.~7! means that for the
variational solutionf 15 f 1

†5 f 25 f 2
†50 at all times and that

with this solution the minimal action is zero.
Upon varying with respect to, e.g.,g1, the resulting

Lagrange-Euler equations are now in full detail

2~]g1
A1

†! f 11 i ḟ 1
†2 f 1

†~]g1
A1!2~]g1

A2
†! f 22 f 2

†~]g1
A2!50.

~9!

1We have named our frequently used quantityA the ‘‘vector po-
tential,’’ in analogy with the quantity that enters as a cross term w
the time derivative~‘‘the particle velocity’’! in the Lagrangian of
classical mechanics@32#, or inside the square with the canonic
momentum and in distinction from the scalar potentialf, which
appears in~nonrelativistic! Lagrangians as a separate term.
0-2
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Since all the terms contain one of thef factors or their time
derivatives~which are necessarily also zero! the above equa
tion is satisfied for the proposed variational solution. Th
may be other solutions, though. If for these not allf ’s are
zero ~and therefore differ from the proposed solution!, than
the action~which consists of positive terms! is positive and
larger than that for the solution given in Eq.~7!.#

These are the equations of motion of the~independent!
vector variables and can be regarded as having the stat
the Langevin equations or Hamilton’s equations for the se
conjugate variablesga andga

† . The processes considered
this section comprise a purely Hamiltonian processAH
~namely, energy preserving, ‘‘elastic’’! as well as some other
dissipative mechanisms. Thus, a Markovian scattering p
cess represented by the symbolMba ~designating half the
probability per unit time of a scattering event taking the s
tem from statea to b) can be written as (Aout ,Ain) to sepa-
rate scattering out of and into a given state. We also ad
stochastic, random process arising from, e.g., an exte
source, asAr . Some other type of processes will be cons
ered below in Sec. V.

For the first two processes we have

AH52Hg,

AH
† 52g†H†52g†H,

~Aout!a5 i(
b

Mbaga ,

~Aout
† !a52 iga

†(
b

Mba ,

~Ain!a52 i
1

N S (
b

Mabgbgb
†D ~ga

†!21,

~Ain
† !a5 i ~ga!21

1

N S (
b

Mabgbgb
†D . ~10!

When we add to these the random force, we obtain in a
tion

~Ar !a52 i f aga , ~Ar
†!a5 igaf a . ~11!

f a represent the components of the random time-depen
force with zero mean and a finite self-correlation. (N is the
number of states in the ensemble, see Appendix A.!

The vector potentialAin is singular. However, singulari
ties in vector potentials are well known~as, e.g., in those fo
solenoidal or monopole fields!. To cancel these singularitie
we shall follow the procedure of Reznik@25# and Gheorghiu-
Svirschevski@16#, who multiply g† into ġ, g into ġ†, add,
and obtain the~master! equations for the density matrix.

After substituting the quantities from Eqs.~7!, ~10!, and
~11! we obtain by this procedure for a diagonal element~say!
aa of the density matrix
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ṙaa5~ ġg†1gġ†!aa

5 i ~@r,H# !aa22raa(
b

Mba12(
b

Mabrbb12raaf a .

~12!

When one writes out the equation, similar to Eq.~12! , for
the time derivatives of the off-diagonal matrix elemen
rab(aÞb), one finds singularities in them, due to the abo
mentioned singularities in the vector potentials. For a m
roscopic system these singularities cancel, when one ta
into account the phase decoherence between different s
of macroscopic bodies.~The subject of microscopic to mac
roscopic transitions does not belong here. It was studied
various methods and has summaries in, e.g., Refs.@33,34#.!

III. POTENTIAL FLUID DYNAMICS

An interesting application of the preceding compl
factor-density formalism is for the well known potential flo
~namely, fluid dynamics without vorticity! as presented in
many hydrodynamic text books, e.g., Ref.@35#. If a flow
satisfies the condition of zero vorticity, i.e., the velocity fie

vW is such that¹W 3vW 50W , then there exists a functionf satis-
fying vW 5¹W f.

In this section we answer the question, what form of t
vector potentialA appearing in Eq.~2! will ensure that upon
variation of the action containing these vector potentials
shall obtain precisely the well known equations of poten
flow hydrodynamics. These equations are

]r

]t
1¹W •~r¹W f!50, ~13!

]f

]t
52

1

2
~¹W f!22h2F2n¹2f. ~14!

In these equations the physical meaning of the quantitie
that r is the mass density,h is the specific enthalpy,n is the
viscosity coefficient, andF is some function representing th
potential of an external force acting on the fluid. The first
these equations is the continuity equation, while the sec
is a modified Bernoulli’s equation which takes into accou
some viscous effects.~A full viscous flow is of course not a
potential flow and contains vorticity.! r andf play the roles
of the squared amplitude and of the phase angle, res
tively. Both are real quantities.

The final results for the desired vector potentials and th
complex conjugates are shown, below, in Eqs.~23! and~24!.
To obtain them, we first express the variational variableg
and g† that we have used so far in terms of the physi
variables~r,f!. The variation will now be carried out with
respect to the latter variables. The transformation is

g5Areif, ~15!

g†5Are2 if. ~16!
0-3
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Though all variables are now functions of the positions, a
are thus continuous variables, we shall label them, as be
by the subscriptsa, etc. The following relations~with no
summations over repeated symbols! arise simply from the
inverse transformation:

ḟa5~ ġag†
a2gaġa

†!/2iraa , ~17!

¹W fa5~¹W gag†
a2ga¹W g†

a!/2iraa , ~18!

¹2fa5~¹2gag†
a2ga¹2g†

a!/2iraa ,

2@~¹W gag†
a!22~ga¹W g†

a!2#/2iraa
2 , ~19!

¹W raa5~¹W gag†
a1ga¹W g†

a!. ~20!

Using these, we first rewrite Eq.~13! as

ṙaa5~ ġag†
a1gaġa

†!

52raa¹
2fa2¹W raa•¹W fa[Ra~ga ,g†

a!. ~21!

Ra being a well-defined, real function of the variational va
ables and of their first and second spatial derivatives~but
independent of the time derivatives!. Likewise, one obtains
the rate equation for the phase, Eq.~14! , as

ḟa52~ ġag†
a2gaġa

†!/2iraa

52
1

2
~¹W f!22h2F2n¹2f[Na~ga ,g†

a! ~22!

in which Na has properties similar toRa @36#.
We can solve for the two quantities,ġag†

a andgaġa
† from

the preceding two equations, and then divide byg†
a andga ,

respectively, to obtain the time derivatives. However, by E
~2! the time derivatives are just the vector potentials. Th
we finally obtain

ġa5~Ra12iraaNa!
1

2g†
a

5 iAa ~23!

and the complex conjugates

ġa
†5

1

2ga
~Ra22iraaNa!52 iAa

† . ~24!

We have thus found the vector potentials which have to
inserted in the action, so as to yield variationally the hyd
dynamic equations, Eqs.~13! and ~14!. It is evident that the
complex representation is a natural way to obtain variati
ally equations of motion for two such dissimilar quantities
amplitude and velocity. The physical extrema are certai
global minima~although the functional may have addition
minima!. Detailed applications will be undertaken in the f
ture including the problem of a general viscous flow.
02612
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IV. APPLICATIONS

A. A periodically varying Hamiltonian

We shall now apply the proposed variational procedure
yield, in one case exactly and in another case approxima
the solution for a~Hermitian! Hamiltonian that has a periodi
variation. The cases chosen are such that analytical solut
are known exactly~ @37–39#!, so that we can compare t
them the variational solutions to be obtained here. Spe
cally, we consider the time development of a doublet sub
to a Schro¨dinger equation whose Hamiltonian in a doub
representation is

H~ t !5~G/2!S 2cos~vt ! sin~vt !

sin~vt ! cos~vt !
D . ~25!

Herev is the angular frequency of an external disturban
The eigenvalues of Eq.~25! are G/2 and2G/2. If G.0,
then in the ground state the amplitude in the upper com
nent (0

1) in Eq. ~25! is

Cg
u5cos~Kt !cos~vt/2!1~v/2K !sin~Kt !sin~vt/2!

1 i ~G/2K !sin~Kt !cos~vt/2!, ~26!

with

K50.5AG21v2. ~27!

The amplitudeCg
l of lower component (1

0) in the ground
state has a similar form, which we shall not bother to wr
out. For the variational procedure we postulate a superp
tion of complex circular functions

Cg
u5 (

m52M ,M11
Am

u expi (m21/2)vt, ~28!

and similarly forCg
l . The complex coefficientsAm

u andAm
l

are determined by minimization of the variational action, E
~2!, subject to the normalization condition that the sum of t
absolute squares of the coefficients is unity.m takes integral
values between the limits and we have taken for our t
functionsM52, that is, six terms in each component. T
half integer in the exponent is suggested by the acquisitio
a Berry phase after a full period 2p/v. For the same reaso
we have taken the range of the integration in Eq.~2! to be
twice the period. So as to create realistic conditions for
implementation of the variational procedure, we have cho
a finite range for the time variable, although, as can be s
from the formulas in Eqs.~26! and ~27!, for a general value
of G the solution is not time periodic. We illustrate the pr
cedure for two cases.

1. A periodic case

This comes about whenG is such that the Rabi frequenc
K in Eq. ~27! andv are commensurate. We have chosenG
5A15v, so thatK52v.

Minimizing the action with respect to the coefficients su
ject to the normalizing conditions turns out to be equivale
to diagonalizing a 12312 matrix, whose elements are th
0-4
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action integral computed with the circular function shown
Eq. ~28! . There are 12312 matrix elements, rather than ju
636, since the upper and lower states are coupled by
off-diagonal terms in Eq.~25! .

We find a pair of zero eigenvalues~actually eigenvalues
of about 10215), whose meaning is the value of the actio
integral in the transformed representation; in other wor
our variational solution is exact. Also, the numerical valu
of the variationally obtained coefficientsAg

u agree with those
in the analytic solution in Eq.~26! . For comparison, the
other eigensolutions have ‘‘eigenvalues’’ of orders 1–20.

2. A nonperiodic case

With the choice of, e.g.,G53 andK5A10/2, the analytic
solution shown in Eq.~26! is not periodic and an exact so
lution cannot be achieved variationally while having a fin
t range in the action integral. Moreover, a larger spread of
basic set in Eq.~28! is needed. Still, so as to estimate t
efficacy of the variational procedure under nonoptimal c
ditions, we used the samet range and the same set size as
~a!. The lowest eigenvalues~5the values of the action inte
gral! are about 0.35, compared with others eigenvalu
which are again in the range of 1–20.

The results are also shown graphically, by comparing
variational solution~full lines! with the exact, analytic solu
tion ~broken lines! in Eq. ~26! for real and imaginary parts in
Figs. 1 and 2, respectively. The similarities are quite good

FIG. 1. Time dependence of the real part of the amplitude in
upper electronic component state. Parameter valuesG53, v51.
Full line—variationally obtained state. Broken line—the exact,
gebraic solution.

FIG. 2. Same as in the previous figure but for the imaginary p
of the amplitudes.
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the first half ~which comprises the period of the Hami
tonian!, but is worse in the second half and further deter
rates later, say in the time range~4p/v,6p/v!. On the other
hand, had we taken the time range of the variational pro
dure@the upper limit of integrationT in Eq. ~2! # up to 6p/v,
we would have obviously got a somewhat different solutio
which would have improved the approximation in the lat
range and spoiled somewhat the agreement in the ea
range. In general, the approximate solution depends on
time range of the action. In our view, this endows a flexib
ity to the practical application of the method, in the sen
that, depending on which time range is of interest, be
approximation can be achieved for that range. Of cou
when the ‘‘approximate’’ solution is identical with the tru
solution in some range, it will remain so, by analytical co
tinuation, for all ranges.

In conclusion, one notes a successful application of
variational principle for a purely Hermitian case, whose s
lution, though available by algebra, is not trivial.

B. A nonlinear evolution

The continuous passage of an initially prepared pure s
to transitions resembling quantum jumps was recently st
ied in Ref. @40#, based on a form of the Liouville–von
Neumann–Lindblad~LvNL ! equation. The actual form use
originated in a representation of fast level crossing in m
lecular systems involving two states@41#. It was noted in
Ref. @40# that the factorization formalism, called the ‘‘squa
root operator’’ method of Ref.@25#, represents an alternativ
way of showing how a dissipative term in the Hamiltonia
can cause decoherence. To apply our variational formalism
this case, we first formulate the evolution equations in
factorization scheme and solve the resulting equations@this
is done in Appendix A below# and, second, we obtain a
approximation to the solution by minimizing the action wi
respect to some parameters appearing in the assumedg’s
@this is carried out in in Appendix B#.

1. Decoherence by the square root operator method

The vector potentials consisting of a Hamiltonian and
dissipative~non-Hermitian! part are now written for the two
factors (g1 ,g2) of the density matrix as

A152
1

2
G cos~vt !g12Jg2

2 iG@g12ug2u2~11mug1u2!/g1
† ,

A25
1

2
G cos~vt !g22Jg12 iG@g22ug1u2~12mug2u2!/g2

† .

~29!

One notices the similarity of these expressions with the c
responding formulas in Refs.@40,41# ~where the interpreta-
tion of the terms is spelt out! and also the divisorg on the
extreme right, characteristic of the factorization formalis
for dissipative processes, Eq.~10! . The trace of the density

e

-

rt
0-5
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(r5gg†) stays constant during the motion and this prope
is maintained unchanged also by the superlinear terms w
enter with the coefficientm.

It may be noted that the equations of motions forg1(t)
andg2(t) and of their conjugates, given in Eq.~7! , lead to
the master equations for the matrix elements of the den
operator. For the diagonal elements these are of the Lv
form ~when m50!, but not for the nondiagonal ones. Th
property has already been noticed in Ref.@25#.

We next solve two equations forg ’s, subject to the pure
state initial conditionsg151, g250 at t50, then form from
the solutions the diagonal matrix elements of the den
matrix and finally show the results in Fig. 3. The quant
changed between the upper three drawings is the strengG
of the dissipative term. As this increases, a transition ta
place from the slow to the fast decoherence regime. We n
the remarkable similarity of the results obtained here by
factorization method to those in Fig. 1 of the above pap
except that for strong dissipation their drawings show lit
oscillations, unlike our third drawing from above. In thi
drawn forG/v520, after a very steep initial slope~not vis-
ible in the figure!, both diagonal density matrix elemen
oscillate about the asymptotic value of1

2.

FIG. 3. Unitary evolution. The diagonal element of the dens
matrix r22 under a successively increasing dissipative parameteG.
The parameters in Eq.~29! areG545 ~25 in the bottom drawing,
chosen to facilitate the computation!, J53, v51, m ~superlinear-
ity coefficient!50. Then, in top drawing—G50, N ~ensemble
size!51; in second drawing—G50.05,N51; in third drawing—G
520, N51; in bottom drawing—G520 ~as in previous, but! N
54. The initial slope in the last two drawings is too steep to
visible and so are tiny fluctuations in the horizontal part of t
bottom drawing. A nonzero value of the superlinear parameterm, of
the order of 1, hardly changes the curves.
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The majority of calculations whose results are shown
this section are carried out for a density matrix referri
to an ‘‘assembly’’ consisting of one system. This mea
that in Appendix A, one hasN51 and the summation overa
in Eq. ~A2! is trivial. We have also worked out the densi
matrices when there is a nontrivial summation, name
when initial conditions on the two factors areg1(0)
5eip/2,e2ip/2,e3ip/2,e4ip/2 andg2(0)50 ~so thatN54), in-
stead of having onlyg1(0)51 ~and N51), as before. The
resultant density tends now to an almost perfectly strai
line. This is similar to the graphs shown in both Ref.@41# and
in Ref. @40# for strong dissipation and elucidates the mean
of system averaging in the density matrix.~In more complex
systems, one would require an averaging in the density
trix over a much larger number of states, such thatN→`.!
We have also worked out theN54 case for the upper thre
graphs in Fig. 3. For these graphs, there was hardly
perceptible change from those shown.

For the detailed interpretation of these results, which
not the primary subject of this work, we again refer to Re
@40,41#, and references therein. Also, we do not delve h
into the details or extensions of the results, but turn to
variational treatment of time development to be got fro
minimizing the action.

2. Solving variationally

We note that the strongly oscillatory factor in the soluti
arises from the driving term (G/2)cos(vt) and that this term
was already present in the Hamiltonian case considere
the preceding section, in Eq.~26!. ~We have, however, elimi-
nated there the fast oscillating factor by subtracting from
Hamiltonian the so-called dynamic phase.! So in this section
we shall putG50, which also makes the numerical aspe
of the variation considerably simpler. We then set up pair
suitable trialg(t)’s, containing parameters to be varied.

In contrast to the preceding section~which was a linear
problem and in which a large number of Fourier coefficie
were varied!, in the present problem only one variation
parameterv is introduced. However, to make progress, w
must consider critical regions of the time domain, name
t50 andt5`. At the former, it is easy to see that in ord
that the singularity due to the zero divisorg†

2(0) in the
vector potential be matched by the time derivative ofg2(t)
at t50, this function must take there the form of

lim
t→0

g2~ t !→A4eibGt1O~ t !, ~30!

with the constant phase angleb arbitrary. Similarly, it can be
shown that, asymptotically for larget, the same solution
must have the form

lim
t→`

g2~ t !→e2 iJtA@11ve22(G2 iJ)t1o~e22Gt!#/2 ~31!

or some other form equivalent to this. A constant phase f
tor was ignored here. The parameterv cannot be found from
0-6
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the equations of motion. We seek to obtain the variationally bestv, such that the condition att50 is also satisfied. After some
elementary algebra one finds that in terms of the variational parameter, the density factorg2 can have the form

g2~ t !5e2 iJtAF11ve22(G2 iJ)t2~11v !exp2$~v12!G2 ivJ%
2t

11vG /2. ~32!
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The previously introduced phaseb was varied independentl
and found to be small. So we putb50. The other density
factor g1(t) was so constructed that the exponentials ins
the square root had the opposite signs to those ing2 and
normalizing factors were added so thatug1u21ug2u251 at all
times.

Minimizing the action integral for a set of parameter va
ues forJ andG yields optimizedv ’s. KeepingJ53 fixed ~as
in Refs.@40,41# and selecting a set of dissipation parame
we obtain as follows:

J53, G50.1, v520.985,

J53, G50.5, v520.78,

J53, G52, v520.755.

For the middle caseG50.5 we compare in Fig. 4 the
variational solution~thin continuous curve, withv520.78)
and the solution from the equation of motion~thick continu-
ous curve!. In the asymptotic regime of larget, the behavior
of the two curves is quite similar, though the amplitude
oscillation is clearly smaller in the variational solution th
in the exact solution. The discrepancy appears more ser
in that a different choice of the variational paramet
namely, v520.98 ~also shown in the figure by broke
lines!, which has an action larger than the optimized o
comes nearer to the exact solution. However, we show in

FIG. 4. Comparison of solutions.r22, a diagonal component o
the density matrix, for the following values of the parameters in
~29!: G50, J53, v51, G50.5, m50. Solution of equation of
motion—thick line. Variational solution in Eq.~32! with optimized
parameterv520.78—thin line. Hypothesized solution as in E
~32! with v520.98—small broken lines. Hypothesized solutio
with v520.05—large broken lines. The inset shows the cur
neart50.
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inset that in the extremely short time region, the optimiz
solution isqualitativelybetter than the other choice. Becau
of the singular behavior of the short time region in the vec
potential, this region dominates the value of the action.
the same time, yet another choice of the parameterv5
20.05~shown in the figure by dotted lines! gives a definitely
poorer resemblance to the correct curve.

In conclusion, when it comes to describe subtle quant
mechanical ensemble properties, the factorization~or square
root operator! method can be used either in its equation
motion form or variationally. In the present case, at least,
equation of motion approach was from a numerical vie
point undoubtedly superior. So one may question the us
the variational method. However, on the one hand not
problems may be easily solvable. On the other hand,
should remember that the derivation of the equation of m
tion in Eq. ~7! is itself based on a variational ansatz intr
duced in this paper.

V. FURTHER EXTENSIONS

To treat non-Markovian processes, the vector potent
have to be functions of theg vectors at earlier times, bu
otherwise, no change in the formalism is needed.

Non-negativity of the entropy change follows from th
master equations and properties of the scattering proba
ties Mba in Eq. ~12! , as is shown in Ref.@42#.

Transport processes can be treated simply. Thus, le
consider electronic conduction in a solid due to a spa
gradient in the potential~i.e., an electric field! or in the am-
bient temperature. Theg vectors are, normally, labeled b
the reciprocal,k-vector index and are essentially small dev
tions from the square root of the equilibrium, Fermi-Dira
electronic distribution function. Following the standard tre
ment given in, e.g., Ref.@13#, the time derivatives of theg
vectors~which are now real and identical tog†) are propor-
tional to the spatial gradients. The vector potentials repres
the scattering integral. Then either equation of motion in E
~7! is simply the Boltzmann equation in an inhomogeneo
form; namely, its left-hand side represents the source or
gradient and the right-hand side contains the desired di
bution function under the integral over all wave vectors. T
Lagrangian can be used to obtain the solution variationa
This variational formulation is, however, different from tho
given in Refs.@11,13#. ~Of course, different variational pro
cedures can lead to the same result.!

We have noted earlier that the postulated Lagrangian d
not contain a potential. Adding a potential to the Lagrang
might apparently change the equations of motion. It seem
us, however, that under conditions prevailing in stocha

.

s
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R. ENGLMAN AND A. YAHALOM PHYSICAL REVIEW E 69, 026120 ~2004!
processes, this will not happen. The reason for this can
stated in various forms and is rooted in the circumsta
~already noted above! that in the presence of a random for
one has no control over the value of the variables, only on
rate of change.~‘‘Free terminal end point’’ condition of Ref.
@3#, p. 9.! In Appendix B we give a formal proof for the
following proposition. ‘‘When the following conditions hold
~a! the potential is a non-negative quadratic form in all of
variables~g’s!, ~b! the vector potentialsA are all real and
positive, ~c! the initial values of theg vectors are suitably
chosen, and~d! the variation is performed under condition
of fixed initial values ofg and ġ, then it follows that the
action obtained from the variation of the velocities only, i.
with the potential regarded as ignorable, is less than the
tion obtained from the variation of both the variables a
their derivatives~namely, through the usual Lagrange equ
tions, which are obtained under fixed initial and final boun
ary conditions!.’’ The result holds probably under a wide
range of conditions, since in the proof we have not utiliz
the requirement imposed on the self-correlation of the r
dom forcesf a by the ‘‘second’’ theorem of Mori@43#. ~This
requirement ensures, among other things, the time-shift
variance of the random process which is at the root of
Onsager-Machlup theory@5,6#. Needless to say, that the re
sult obtained in Appendix A is not in conflict with the valid
ity of the Euler-Lagrange equations, since these are obta
under conditions that the variables have fixed values at
final time.

VI. CONCLUSION

The variational action~or Lagrangian! proposed in Eq.~2!
for dynamical processes has the advantages of being sim
general, and flexible. It differs from previously employe
variational procedures by the factorization ansatz in Eq.~1!,
by the absence of a scalar potential term, and the presen
a variable final time upper limit. The relation of the post
lated Lagrangian to some basic invariance property~such as
‘‘frame indifference’’ @44#! remains to be explored, accou
being taken of the fact that, for vector potentials that are
all equal, the formalism is non-Abelian~namely, the vector
potentials cannot be transformed away by a single ga
factor! @45#.
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APPENDIX A: A TUTORIAL ON THE FACTORIZED
DENSITY MATRIX FORMALISM

Though the factorized density matrix, written in an a
stract form asr5g•g†, has been employed before in Re
@16,25#, we shall explain its formalism here, followin
Band’s introductory texts to the von Neumann mat
method@46,47#. Let Ca be a possible wave function descri
ing the quantum state of thea’th system in the ensembl
~a51,2, . . . ,N!. It can be expanded in terms of a set
eigenstatesun as
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Ca5(
n

gn
aun . ~A1!

As derived in Ref.@46# and other texts, the density matri
arises from the ensemble average over all systems in
sense that itsnm component is

rnm5
1

N (
a

gn
agm

a1 . ~A2!

ga’s are best viewed as row vectors, distinct for eacha ~or
system! and thega1’s as column vectors. Theg and g†

derivatives in the text~which implement the variation proce
dure! are with respect togn

a and gm
a1 . The ensemble aver

aging, namely, the summing overa and the subsequent divi
sion by N, is not explicitly written out in the text, but is
designated by inserting a dot betweeng symbols, so that the
previous matrix element is written as

rnm5gn•gm
† . ~A3!

It is clear thatg’s are not vector quantities, but the trac
over the dotted products are proper scalars.

APPENDIX B: PROOF OF THE MINIMAL ACTION
UNDER ONE-POINT BOUNDARY CONDITION

Assumptions. In the action, Eq.~2! , the vector potentialA
is now assumed to be positive~non-negative! and real. We
shall further subtract from the action~see below! a potential
term, in which the potentialV depends on the variables onl
not on their derivatives. This potential is supposed to
monotonic, nondecreasing, and positive in the relevant ra
of its variables.

We start the proof for a single time-dependent variablg
which replaces the earlier complex variableg through

ġ5ġ~ t !52 i ġ. ~B1!

The reality ofg for all times will be evident. The one-poin
~initial time! boundary conditions fixg(0) andġ(0), while
g(t) at later times develops according to its equation of m
tion. We write the action, including the potential, in th
single variableg as

S~T!5E
0

T

dt@$ġ2A~ t !%222V„g~ t !…#. ~B2!

The boundary conditions fix the value ofg(0).0 and of
ġ(0). We next minimize the above action in two ways an
subsequently compare the resulting actions. The first is
usual Lagrange equation way in the presence of a potentiV
and the quantities arising from this method will be deno
by the superscriptV. The second method pretends that the
is no potential and the corresponding quantities will take
superscript 0. It is the second method that was used in
text.
0-8
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g̈V~ t !5Ȧ~ t !2V8„g~ t !…, ~B3!

where the prime represents the derivative with respect to
argumentg,

ġ0~ t !5A~ t !. ~B4!

The latter equation imposes the following initial conditio
for the velocities:

ġ0~0!5A~0!5ġV~0!. ~B5!

Integrating Eq.~B3! once, we obtain

ġV~ t !5A~ t !2P~ t !, P~ t ![E
0

t

V8„g~ t !…dt, ~B6!

where P(t) is zero att50 and is for positive times non
negative, since it is, by Eq.~B3! , the time integral of a
positive quantity. Subtractingġ0 shown in Eq.~B4! from the
last equation and integrating, it is clear thatgV never exceeds
~algebraically! g0. Calculating the actions obtained in th
two methods and subtracting we find:

SV~T!5E
0

T

dt@$ġV2A~ t !%222V„gV~ t !…#

5E
0

T

dt@P~ t !222V„gV~ t !…#,
-

s

-

m

-
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e

S0~T!5E
0

T

dt@$ġ02A~ t !%222V„g0~ t !…#

5E
0

T

dt@22V„g0~ t !…#⇒SV~T!2S0~T!

5E
0

T

dt@P~ t !212$V„g0~ t !…2V„gV~ t !…%#. ~B7!

In the integrand the squared term is necessarily posi
~non-negative! and so is the term containing the difference
potentials since the 0 argument is larger than theV argument
and the potential is monotonic by supposition. Though o
tained under restricted conditions, the result shows cle
that the two-point boundary conditions are necessary re
sites for the validity of the Lagrange-Euler equations of m
tion. Generalization to several~real! variablesg1 ,g2 , . . . ,gN
is immediate, when the potential is a positive quadratic fo
in these variables, since this can be diagonalized~with posi-
tive eigenvalues! simultaneously with the kinetic energ
term. However, the initial point variables need to be chos
carefully in this case.

Finally, we have not proven that the action using equ
tions of motion of the text is minimal, but only that is lowe
than that obtained with the~for this case, inappropriate! use
of the Lagrange equations. Furthermore, it is not evident
the solutions obtained in this appendix satisfy conditions
quired from density matrices or probabilities~e.g., normal-
izations!.
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